
1

RESTful Web Services
Week 9 lecture

COMP5347 E-Commerce Technology

COMMONWEALTH OF

Copyright Regulations 1969
WARNING

 This material has been reproduced and communicated to
 you by or on behalf of the University of Sydney pursuant to Part
VB of the Copyright Act 1968 (the Act).
 The material in this communication may be subject
 to copyright under the Act. Any further reproduction or
 communication of this material by you may be the
 subject of copyright protection under the Act.

Do not remove this notice.

Agenda
• Examples of published public web services

– The so called SOAP vs. REST

• Java API for RESTful Web Services (JAX-RS)
• Assignment 2 intro

2

3

What are web services
• Web services is a distributed architectural paradigm for applications
• It provides a simple and open way of integrating functions or data from

various systems
• It can be used within an organization and across the public Internet
• When it was first proposed, it consists of several basic standards

– SOAP: A messaging protocol for transferring information
– WSDL: A model and an XML format for describing Web services
– UDDI: A registry and protocol for publishing and discovering web services

(not really used!!)
– WSDL and UDDI are in tension with the idea of using URI to address web

resources
– Original design of Web Services is very application centric in contrast to

the resource centric Web and REST style.
• The term web services has much broader meaning now

– At least two implementations: SOAP based vs. RESTful

What can we use web services for

4

Regular browser generated query

5

Web services query

6

http://api.flickr.com/services/rest/?method=flickr.photos.search&
api_key=f548d1540b24fbc803277d1e4e9943df&text=tiger&api_sig=546727ab6596ffb00792de54c8b4e1c0

Example Web Service APIs
• Yahoo API:

– http://developer.yahoo.com/everything.html
• Flickr API

– http://www.flickr.com/services/api/
• Amazon product advertising API

– https://affiliate-
program.amazon.com/gp/advertising/api/detail/main.html#details

• New York Times API
– http://developer.nytimes.com/docs

• Youtube API
– https://developers.google.com/youtube/getting_started#data_api

• Ebay API
– http://developer.ebay.com/common/api/
– http://developer.ebay.com/DevZone/finding/CallRef/findItemsByKeywords.ht

ml

7

http://developer.yahoo.com/everything.html
http://developer.yahoo.com/everything.html
http://www.flickr.com/services/api/
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
http://developer.nytimes.com/docs
https://developers.google.com/youtube/getting_started
http://developer.ebay.com/common/api/
http://developer.ebay.com/DevZone/finding/CallRef/findItemsByKeywords.html
http://developer.ebay.com/DevZone/finding/CallRef/findItemsByKeywords.html

SOAP vs. REST: Superficial difference
• What many programmers see, what most public web

services implement, and what largely determines the fate of
both

• As a client/consumer of web services
– To consume a REST style web services

• The request is just a normal HTTP request where you can include the
parameters in query strings or request body

• The response is just a normal XML (or JSON) document
• Straightforward implementation

– To consume a SOAP style web services
• The request should contain a body of XML document called a SOAP request

message, it has to follow certain XML schema
• The response is also a SOAP response message
• We normally use certain package to handle SOAP message

– Javax.xml.soap, Apache Axis, …

8

Example SOAP client
• General information get from the Flickr website

– The SOAP Server Endpoint URL is
http://api.flickr.com/services/soap/

– The SOAP Request looks like

9

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema" >
 <s:Body>
 <x:FlickrRequest xmlns:x="urn:flickr">
 <method>flickr.test.echo</method>
 <name>value</name>
 </x:FlickrRequest>
 </s:Body>
</s:Envelope>

From http://www.flickr.com/services/api/request.soap.html

The Java SOAP client would look like

10

public void callPanda(String pandaName){
 try{
 MessageFactory mf = MessageFactory.newInstance();
 SOAPFactory sf = SOAPFactory.newInstance();
 SOAPMessage msg = mf.createMessage();
 SOAPPart sp = msg.getSOAPPart();
 SOAPEnvelope env = sp.getEnvelope();
 env.addNamespaceDeclaration("xsi","http://www.w3.org/1999/XMLSchema-instance");
 env.addNamespaceDeclaration("xsd","http://www.w3.org/1999/XMLSchema");
 SOAPBody bd = env.getBody();
 // create the main element of the body
 SOAPElement be = sf.createElement(env.createName("FlickrRequest","x","urn:flickr"));
 // create the method element
 SOAPElement method = sf.createElement("method");
 method.setValue(Constants.METHOD); // it is flickr.panda.getPhotos here
 // create the parameter "panda_name"
 SOAPElement pandaNamePara=sf.createElement("panda_name");
 pandaNamePara.setValue(pandaName);
 // create the api_key element
 SOAPElement apiKey = sf.createElement("api_key");
 apiKey.setValue(Constants.API_KEY);

 // link them together
 be.addChildElement(method);
 be.addChildElement(pandaNamePara);
 be.addChildElement(apiKey);
 bd.addChildElement(be);

 //create the connection and call the service
 SOAPConnection conn = SOAPConnectionFactory.newInstance().createConnection();
 SOAPMessage response= conn.call(msg, Constants.SOAP_ENDPOINT);

 }catch (Exception e){
 System.out.println(e.getMessage());
 }
}

Prepare the soap request message content

Link content in required format

Call the SOAP web services

Example REST client
• General information

– The REST Endpoint URL is http://api.flickr.com/services/rest/
– The url sent for panda search would be

http://api.flickr.com/services/rest/?method=flickr.panda.getPh
otos&panda_name=ling+ling&api_key=somekey

– Example response

11

<photos interval="60000" lastupdate="1235765058272" total="120" panda=“ling ling">
 <photo title="Shorebirds at Pillar Point" id="3313428913"
 secret="2cd3cb44cb" server="3609" farm="4" owner="72442527@N00" ownername="Pat Ulrich"/>
 <photo title="Battle of the sky" id="3313713993"
 secret="3f7f51500f" server="3382" farm="4" owner="10459691@N05" ownername="Sven Ericsson"/>
</photos>

The Java REST client would look like

12

public void callPanda(String pandaName){
 try{
 String callUrlStr = Constants.REST_ENDPOINT+"?method="+Constants.METHOD+
 "&panda_name="+URLEncoder.encode(pandaName,Constants.ENC)+
 "&per_page="+Constants.DEFAULT_NUMBER+
 "&api_key="+Constants.API_KEY;

 URL callUrl = new URL(callUrlStr);
 HttpURLConnection urlConnection = (HttpURLConnection)callUrl.openConnection();
 InputStream urlStream = urlConnection.getInputStream();

 DocumentBuilder db = DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document response = db.parse(urlStream);

 //print out all titles
 System.out.println("The titles returned are: ");
 NodeList nl = response.getElementsByTagName("photo");
 for (int i = 0; i < nl.getLength(); i ++){
 System.out.println(nl.item(i).
 getAttributes().getNamedItem("title").getTextContent());
 }
 urlConnection.disconnect();
 }catch (Exception e){
 System.out.println(e.getMessage());
 }
}

This is the REST request!

Call the REST service

The truth is…
• Many published REST format web services are not truly

RESTful
– Use only the GET and POST method
– Resources are not properly expressed in URI
– You can see some SOAP flavour there
– But most of them follow the requirement that HTTP messages

should be as self-descriptive as possible

• Many published SOAP Web services format only give you a
small and biased view of what SOAP Web Service really is
– SOAP is a protocol, it runs on top of many other protocols, not just

HTTP
– SOAP can be web friendly
– SOAP messages can be exchanged using HTTP GET method

13

Why SOAP feels so heavy?
• Flickr’s SOAP API only uses the SOAP message format

– It does not have an WSDL to define the input/output message and
respective types of elements inside the message

– It does not have any control element in the SOAP header
• Amazon, Google and Ebay’s SOAP APIs have more to show

– Proper WSDL
– Proper way to generate proxy and skeleton on both sides

• Most published public web services provide relative simple “services”
on relatively simple types of web resources
– No need to add additional control on SOAP header
– No need to provide WSDL

• Most xml request/response message are self-descriptive enough
• Programmers can “guess” the semantics and syntax of the message easily
• It is quite easy to handle custom format XML/JSON message

– SOAP does not add any obvious benefits for its obvious heaviness
compared with REST

14

What is REST
• Representational State Transfer
• REST-style architectures consist of clients and servers.

Clients initiate requests to servers; servers process
requests and return appropriate responses. Requests and
responses are built around the transfer of representations
of resources. A resource can be essentially any coherent
and meaningful concept that may be addressed. A
representation of a resource is typically a document that
captures the current or intended state of a resource.

15

Based on Roy Fielding’s doctoral dissertation, rephrased by wikipedia
http://en.wikipedia.org/wiki/Representational_State_Transfer

http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Resource_%28Web%29
http://en.wikipedia.org/wiki/Representation_%28systemics%29

SOAP and RESTful is not mutually exclusive

• SOAP is a protocol while RESTful is more or less a style
• SOAP comes from traditional distributed system area

– Both Amazon and Google have strong tradition in distributed
computing

– The whole set SOAP web services technologies has lots of features
to enable services description and integration

• RESTful style also comes from distribution system area
– Has Web flavour in it
– We only discuss the RESTful style adapted in a few web application

framework

16

17

Web Architecture Compatibility
• A URI as a resource identifier is one of the central concepts of WWW

– A predominant use of the World Wide Web is pure information retrieval,
where the representation of an available resource, identified by a URI, is
fetched using a HTTP GET request without affecting the resource in any
way.

• The simplicity and scalability of the Web is largely due to the fact that
there are a few "generic" methods (GET, POST, PUT, DELETE) which
can be used to interact with any resource made available on the Web
via a URI.

• RESTful style is compatible with general web architecture (Web
friendly)

• It is recommended that resources that may be accessed by SOAP
should, where practical, place any such resource-identifying information
as a part of the URI identifying the target of the request

Basic REST design principles
• Use HTTP methods explicitly
• Be stateless

– Address the resources explicitly in the request message

• Expose directory structure-like URIs
– http://www.myservice.org/discussion/topics/{topic}

• Transfer XML, JSON, or both
18

http://www.ibm.com/developerworks/webservices/library/ws-restful/

http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/

Creating Rest Service using J2EE 6
• J2EE 6 includes JAX-RS API for creating RESTful web

services
• Jersey is the reference implementation of the JAX-RS
• Several application servers have Jersey included
• To deploy Jersey based RESTful web services on Tomcat,

you need to include Jersey library
• JAX-RS relies on java annotations to implement RESTful

web services
– It has annotations to specify location of resources, url mappings to

various resource manipulation methods, xml/json format conversion
for resources

19

Important Concepts
• Resources

– Root Resources
• Some resources that you obtain directly

– Sub Resources
• Related with a root resource, is obtained through the root resource

– Example
• The collection of Products can be viewed as a root resource while individual

Product can be viewed as a sub resource
• Movie can be viewed as a root resource while Actors belonging to the movie is a

sub resource
– Root resource classes are POJOs (Plain Old Java Objects) that are

annotated with @Path have at least one method annotated with @Path or a
request method designator annotation such as @GET, @PUT, @POST, or
@DELETE.

• Resource methods
– are methods of a resource class annotated with a request method

designator.

20

http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/Path.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/Path.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/GET.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/PUT.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/POST.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/DELETE.html

A Root Resource Example
package rest;
/**

 * Representing the ProductResource in Rest web Services

 */

@Path("/products")

public class ProductResource {
 private ProductDao pdao = DaoFactory.getInstance().getProductDao();
 @Context UriInfo uriInfo; //like an instance variable definition

 @GET

 @Produces(MediaType.TEXT_XML)

 //handles methods like http://localhost:8080/shoppingCart/rest/products

 public List<Product> getAllProducts() {
 return pdao.getAllProducts();
 }

 @GET

 @Path("{id}")

 @Produces(MediaType.TEXT_XML)

 //handles methods like http://localhost:8080/shoppingCart/rest/products/1

 public Product getProductById(@PathParam(value="id") int productId) {
 return pdao.getProductById(productId);
 }

 …

}
21

Important annotations
• @Path annotation

– The @Path annotation's value is a relative URI path.
• The base URL is based on your application name, the servlet and the

URL pattern from the web.xml configuration file
• http://localhost:8080/shoppingCart/rest/products

– Variables can be embedded in @Path value; variables are denoted
by curly braces;

– Variable values are obtained through the @PathParam annotation,
which may be used on method parameter of a request method

• request method designator
– @GET, @PUT, @POST , @DELETE, and @HEAD are request

method designator annotations defined by JAX-RS and which
correspond to the similarly named HTTP methods.

22

http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/Path.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/PathParam.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/GET.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/PUT.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/POST.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/DELETE.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/HEAD.html

Important annotations – cont’d
• @Produces

– is used to specify the MIME media types of representations a
resource can produce and send back to the client.

• @Consumes
– is used to specify the MIME media types of representations a

resource can consume that were sent by the client.

• @Context
– Is used to obtain information like HTTP header, request, uri and so

on

• Representations and Java types
– JAX-RS supports the automatic creation of XML and JSON via

JAXB
– @XmlRootElement can automatically convert the annotated java

class into xml format

23

http://java.sun.com/javase/6/docs/api/javax/xml/bind/annotation/XmlRootElement.html

The model class
package model;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement

public class Product {
 private String title,description,imageUrl;
 private double price;
 private int productId = -1; //default id will be modified by the storage
…
}

24

Deploying a RESTful web services
• Many different ways to deploy the services
• Relying on a Servlet provided by implementation framework

25

 <servlet>
 <servlet-name>ProductRest</servlet-name>

 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>rest</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>ProductRest</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>

JAX-RS RESTful request through browser

26

RESTful POST request
@POST

@Consumes(MediaType.APPLICATION_XML)

public Response addProduct(JAXBElement<Product> productXML) {
 Response res = null;
 Product product = productXML.getValue();

 int productId = product.getProductId();
 if (productId != -1){ //an old resource
 pdao.updateProduct(product);

 res =Response.noContent().build();

 }else{
 pdao.addProduct(product);

 res = Response.created(uriInfo.getAbsolutePath()).build();

 }

 return res;
}

27

Creating simple java client
// Omit package and import statements

public class ProductRestClient {
 public static void main(String[] args) {
 ClientConfig config = new DefaultClientConfig();
 Client client = Client.create(config);

 WebResource service = client.resource(getBaseURI());

 // Create one product

 Product product = new Product("Shutter Island","Novel","../imgs/webapplication.jpg",14.95);
 ClientResponse response =

 service.path("rest").path("products").accept(MediaType.APPLICATION_XML).post(ClientResponse.class,
 product);

 // Return code should be 201 == created resource

 System.out.println(response.getStatus());

 // Update product with id 1

 product = new Product(1, "Web Application Architecture","textbook","../imgs/webapplication.jpg",50.95);
 response =

 service.path("rest").path("products").accept(MediaType.APPLICATION_XML).post(ClientResponse.class, product);
 // Return code should be 204 == no content

 System.out.println(response.getStatus());

 // Get product with id 1

 System.out.println(service.path("rest").path("products/1").accept(

 MediaType.TEXT_XML).get(String.class));
 }

 private static URI getBaseURI() {
 return UriBuilder.fromUri("http://localhost:8080/shoppingCart").build();
 }

}

28

After running java service client

29

201
204
<?xml version="1.0" encoding="UTF-8"
standalone="yes"?><product><description>textbook
</description><imageUrl>../imgs/webapplication.j
pg</imageUrl><price>50.95</price><productId>1</p
roductId><title>Web Application
Architecture</title></product>

Console output:

Browser client output:

New product added
by java client

The value modified by java client

The response from the first POST request
The response from the second POST request

The response from the GET request

	RESTful Web Services
	Agenda
	What are web services
	What can we use web services for
	Regular browser generated query
	Web services query
	Example Web Service APIs
	SOAP vs. REST: Superficial difference
	Example SOAP client
	The Java SOAP client would look like
	Example REST client
	The Java REST client would look like
	The truth is…
	Why SOAP feels so heavy?
	What is REST
	SOAP and RESTful is not mutually exclusive
	Web Architecture Compatibility
	Basic REST design principles
	Creating Rest Service using J2EE 6
	Important Concepts
	A Root Resource Example
	Important annotations
	Important annotations – cont’d
	The model class
	Deploying a RESTful web services
	JAX-RS RESTful request through browser
	RESTful POST request
	Creating simple java client
	After running java service client
	Resources

